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FEEDBACK CONTROL SYSTEM

• Process control is methods to force 

process parameters to have specific 

values.

• Objective to maintain the value of some 

quantity at some desired level regardless 

of influences 

Process Types

• Self-regulating Processes
– These are uncontrolled processes. The process 

variables are not regulated. Example!

• Manual Controlled Processes
– These proceses are controlled by human Example!

• Automatic Controlled Processes
– These process are controlled by automatic controller. 

There are 2 types:
• feed forward control system. Example!

• feedback control system (closed-loop control system). 
Example!

– We concern with the analysis and design of closed-
loop control system.

Self-regulating Processes
• The process outputs are not regulated, its value will easily change. 

• following is an example of self regulating process
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Heat exchange process when under Manual control. The dot line 
represent the closed loop of the controller and the process 

Automatic controlled process

Heat exchange process when under Automatic control. 
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MODELS OF PHYSICAL SYSTEM

• Mathematical model of a system is defined as a 
set of equation used to represent physical 
system. 

• It should be understood that no mathematical 
model of physical system is exact, although we 
may increase the accuracy by increasing the 
complexity of the equations 

• In this module we only concern with LTI system, 
whose equation can be solved using Laplace 
transform and can be represented by a transfer 
function.

models of electrical elements
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Electrical circuit example modeling

• In this circuit we consider v1 to be 
the input and v2 to be the output.

• here we have to write a set 
equations whose solution will yield  
v2(t) as function of v1(t) or V2(s) as 
a function of V1(s)
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From the first Laplace transformed equation
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we solve for I(s)

Substituting I(s) to the second equation
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The transfer function of this system is
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• thus the circuit can be modeled by:

– two differential equation

– two equation in the LAPLACE transform 

variable, or

– a transfer function

• another model using state space will be discussed 

next time

Electrical circuit example modeling

Op-amp example modeling

-

+

Zi (s)

Zf (s)

Vi (s)
Vo (s)

)(

)(

)(

)(
)(

sZ

sZ

sV

sV
sG

i

f

i

o

Block diagram and signal flow graph
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Mechanical Translational System modeling
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Mechanical Rotational System modeling

STATE VARIABLE MODELING

• Purpose: to develop presentation which preserves the 
input output relationship, but which is expressed in n first 
order equation

• Advantage: in addition to the input-output characteristic, 
the internal characteristic of the system is represented

• Computer aided analysis and design of state models are 
performed more easily

• We feedback more information (internal/state variable) 
about the plant

• Design procedure that result in the best control system 
are almost all based on state variable models.

STATE VARIABLE MODELING
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Let us start with an example

For second order system we define 

two state variables x1(t) and x2(t) as 

x1(t) = y(t) 
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Then we may write

Written in specific format, we have

In matrix notation, we have

A second order D.E. has been modified into 

two first order D.E’s. we used two state 

variables x1 and x2. For one n order D.E 

there will be n first order D.E’s having n state 

variables.

STATE VARIABLE MODELING

 Definition: The state of a system of any time t0 is the amount of 

information at t0 that together with all inputs for t t0, uniquely 

determines the behavior  of the system for all t t0
• The standard form of the state equation is

dx(t)/dt = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where

– x(t) = state vector

– A = (n n) system matrix

– B = (n r) input matrix

– u(t) = input vektor = (r 1) vector composed of the system input function

– y(t) = output vektor = (p 1) vector composed of the defined output

– C = (p n) output matrix

– D = (p r) matrix to represent direct coupling between input and output

STATE VARIABLE MODELING

 Recall that standard form of the state equation is

dx(t)/dt = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

 The first equation, called the state equation, is a 1st order D.E and 
x(t) is the solution of the equation.

 The second one is the output equation. Given x(t) and u(t) y(t) can 
be found.

 Usually matrix D is zero. Nonzero D indicates that there are some 
path coupled input and output.

 On the first equ only the first derivatives of the state var may appear 
on the left side of equation and no derivatives on the right side

 No derivatives may appear on the output equation.

 The standard format of the state equation valid for multiple input and 
output system.

STATE VARIABLE MODELING
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Example 3.1     Consider a D.E as follows:
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where u1 and u2 are inputs and y1

and y2 are outputs. Let us define 

the states:
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with the outputs equation

this equation equations may be 

written in matrix form
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SIMULATION DIAGRAM                                                                                         
We have presented the way of finding state model from differential Equation. We will present a 
method of finding state model form transfer function. The method is based on simulation 
diagram. It is a block diagram or flow graph consisted of gain, summing junction and integrator 
only.
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•The first one  is the control canonical form

SIMULATION DIAGRAM  

The second one is the observer canonical form :
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The diagrams can be easily expanded to higher order system

SIMULATION DIAGRAM

Once simulation diagram of transfer function is 
constructed, a state model of the system is easily  
obtained. The procedure has two step

1. Assign a state variable to the output of integrator

2. Write an equation for the input of each integrator 
and  an equation for each system output . These 
equation are written as function of integrator 
outputs and the system inputs 

This procedure yields the following state equation

STATE EQUATION FROM SIMULATION DIAGRAM (control canonical form)  

s

1
x2s

1u(t) +

1a

- 2a

-

0a

s

1
x3

-

b0

b1

b2

++

+

y(t)

x1

xy 210 bbb

uxx

1

0

0

100

010

210 aaa

u(t)

s

1
x3

b1

a1

s

1
x2

b2

a2

b0

a0

+ + +

s

1+ + y(t)

x1

STATE EQUATION FROM SIMULATION DIAGRAM (observer canonical form) 
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Example
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Consider the mechanical system with the following transfer function
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The state model of control 

canonical form is

The state model of observer 

canonical form is


