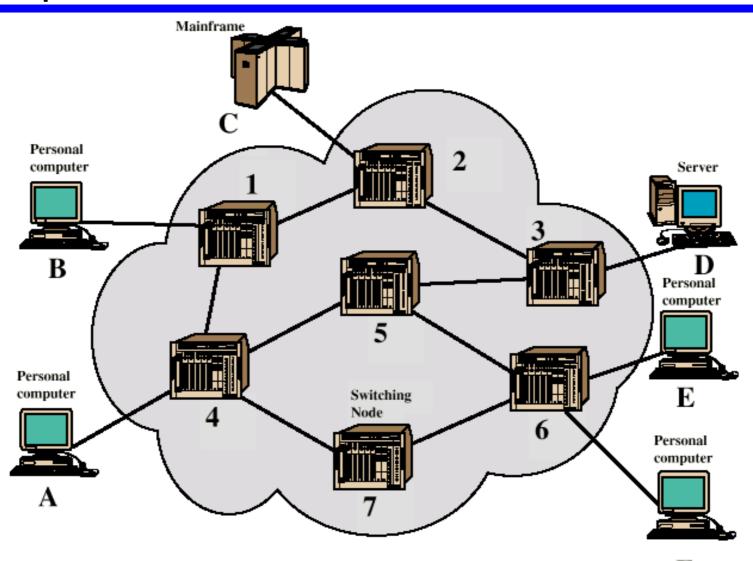
Circuit Switching

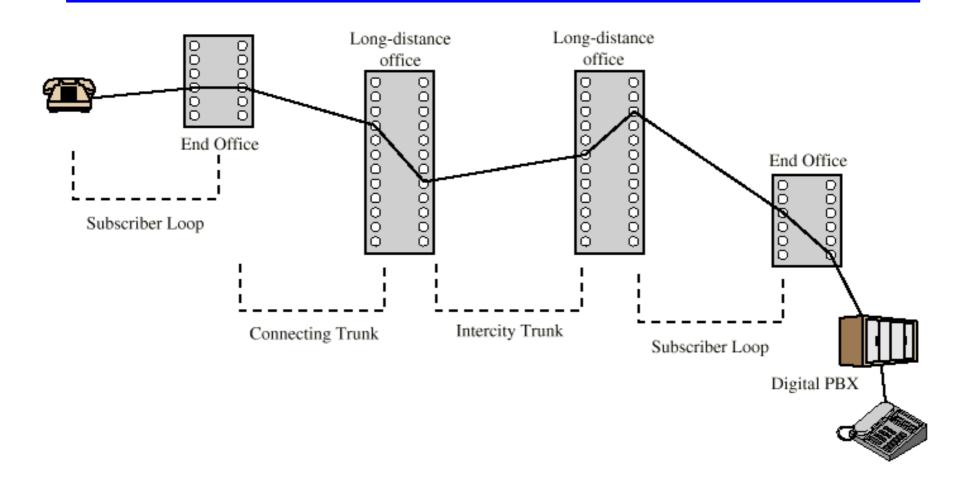

Jaringan Switching

- Transmisi jarak jauh melalui simpul-simpul jaringan switching perantara
- Simpul switching tidak berkaitan dengan isi data
- Perangkat yang melakukan komunikasi disebut station
 - **Komputer**, terminal, telephone, dsb
- Kumpulan simpul yang saling terhubung disebut jaringan komunikasi
- Data yang memasuki jaringan diarahkan ke tuju-an dengan cara diswitching dari simpul kesimpul

Simpul

- □ Simpul-simpul saling dihubungkan satu sama lain atau ke statiun dengan beberapa simpul
- Jalur simpul ke simpul berupa multiplexing
- Jaringan tidak sepenuhnya dikoneksikan
 - diharapkan memiliki lebih dari satu jalur untuk mempertahankan reabilitas jaringan
- Dua teknologi switching yang berbeda
 - Circuit switching
 - Packet switching

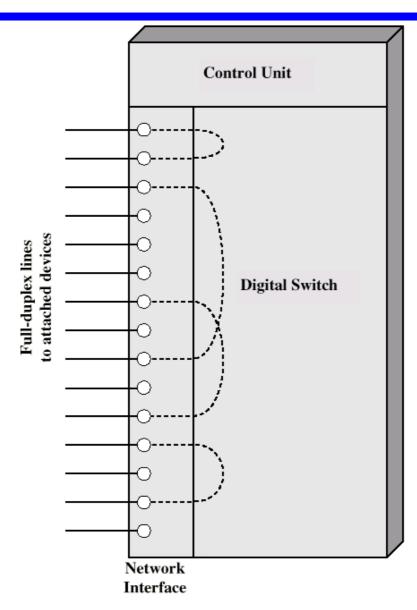
Simple Switched Network


Circuit Switching

- Jalur komunikasi ditempatkan diantara dua stasiun
- Tiga fase
 - **pe**mbangunan sircuit
 - ▲ Transfer data
 - Diskoneksi sirkuit
- Harus memiliki kapasitas switching internal untuk mengendalikan koneksi yang diminta
- Harus mempunyai kemampuan menyusun dan menyediakan jalur sepanjang jaringan

Aplikasi Circuit Switching

- Tidak Efisien
 - kapasitas saluran dimaksudkan untuk durasi sebuah koneksi
- Membangun koneksinya membutuhkan waktu
- Dikembangkan untuk mengendalikan lalu lintas suara


Public Circuit Switched Network

Komponen Telekomunikasi

- Pesawat
 - Nerangkat yang terhubung ke jaringan
- Jalur pesawat
 - ialur antara pesawat dan jaringan
- Pertukaran
 - New pusat switching di dalam jaringan
 - pusat yang mendukung pesawat disebut End office
- ☐ Trunk
 - Cabang-cabang diantara pertukaran
 - **Multiplexing**

Circuit Switch Elements

Konsep Circuit Switching

- Digital Switch
 - menyediakan jalur sinyal yang jelas diantara sepasangperangkat
- Interface jaringan
- Unit Kontrol
 - membangun koneksi
 - www.umumnya berdasarkan permintaan
 - mengendalikan dan membalas permintaan
 - menentukan apakah tujuan dalam keadaan bebas
 - menyusun jalur sepanjang switch
 - mempertahankan koneksi
 - memutuskan koneksi

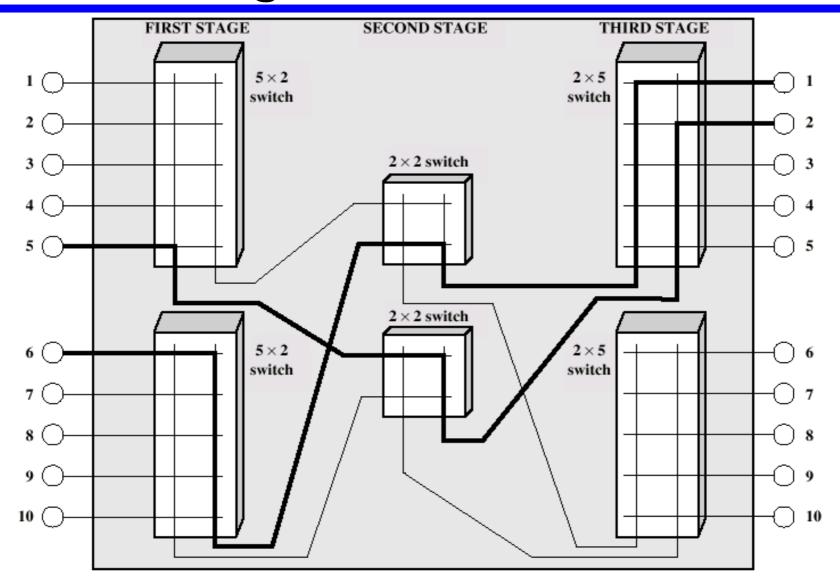
Blocking or Non-blocking


- Blocking

 - digunakan pada sistem suara
 - >> panggilan telepon berdurasi pendek
- Non-blocking
 - memungkinkan semua stasiun dihubungkan sekaligus (dalam bentuk pasangan)
 - digunakan bagi hubungan beberapa data

Space Division Switching

- Dikembangkan untuk lingkungan analog
- Jalur fisik terpisah satu sama lain
- Swith Crossbar
 - jumlah titik persimpangan berkembang seiring dengan jumlah stasiun yang terpasang
 - Hilangnya titik persimpangan menghalangi koneksi
 - Titik persimpangan tidak bisa dipergunakan secara efisien
 - semua stasiun aktif, hanya beberapa titik persimpangan yang terpakai
 - tidak ada pemblokan


Crossbar Matrix

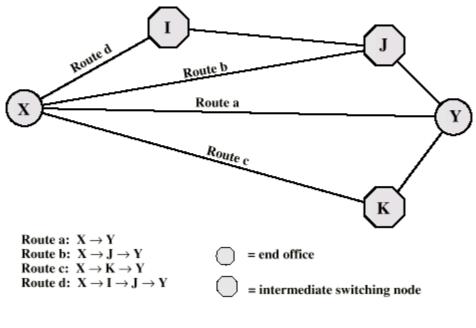
Multistage Switch

- jumlah titik persimpangan berkurang
- Terdapat lebih dari satu jalur sepanjang jaringan
 - meningkatkan reabilitas
- Skema kontrol yang lebih kompleks
- Memungkinkan pemblokan

Three Stage Switch

Time Division Switching

- pembagian aliran bit berkecepatan rendah menjadi bagian-bagian kecil yang membagi aliran berkecepatan tinggi dengan aliran bit lain
- contoh TDM bus switching
 - berdasarkan pada synchronous time division multiplexing
 - setiap stasiun dihubungkan melalui gerbang kontrol menuju bus digital berkecepatan tinggi
 - memungkinkan data jumlah kecil menuju bus


Routing

- Beberapa koneksi sirkuit memerlukan sebuah jalur sepanjang lebih dari satu switch
- harus merencanakan sebuah jalur
 - Efisien
 - **fle**ksibilitas
- Switch telepon umum disusun berstruktur pohon
 pendekatan yang statis
- Routing yang dinamis mampu beradaptasi dengan perubahan kondisi

Alternate Routing

- Jalur-jalur yang memungkinkan dipergunakan diantara kedua kantor yang sudah ditetapkan
- memilih jalur yang tepat untuk setiap panggilan
- 🛾 jalur sudah terlebih dahulu ditetapkan
- Susunan yang berbeda dari suatu jalur digunakan pada periode waktu yang berbeda

Alternate Routing Diagram

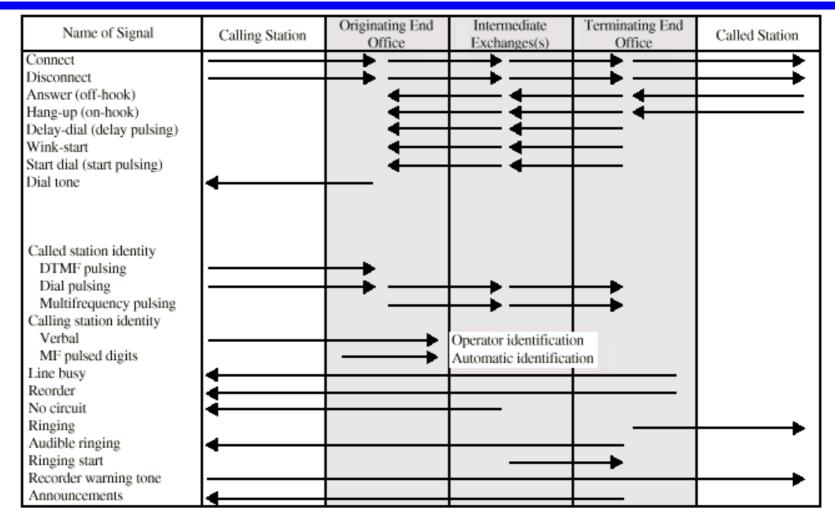
(a) Topology

Time Period	First route	Second route	Third route	Fourth and final route
Morning	a	b	c	d
Afternoon	a	d	b	c
Evening	a	d	c	b
Weekend	a	c	b	d

(b) Routing table

Fungsi Kontrol Pensinyalan

- Komunikasi yang terdengar oleh pelanggan
- Transmisi dari beberapa nomor yang terkoneksi
- Indikasi yang menunjukkan panggilan tidak bisa dilengkapi
- Indikasi panggilan tidak terkoneksi
- Signal yang membuat telepon berdering
- Informasi tagihan
- Informasi status peralatan
- Informasi diagnostik
- Kontrol dari peralatan khusus


Control Signal Sequence

- dua telepon tidak digunakan
- Kantor menswitch sinyal
- Switch memberi respon melalui bunyi dial tone
- Pemanggil menekan nomor
- Jika yang dipanggil tidak sibuk, mengirim sinyal dering, sehingga telepon berdering
- Feedback kepada pemanggil
 - & dering, nada sibuk, panggilan tidak lengkap
- Pemanggil penerima panggilan
- Switch menghentikan sinyal dering
- Switch membangun koneksi antara dua pesawat
- Koneksi dihentikan bila kedua pelanggan meletakkan telepon

Switch to Switch Signaling

- perangkat terhubung ke switch yang berbeda
- switch utama mencari interswitch trunk
- mengirim sinyal yang tidak sibuk kepada trunk dan meminta register digit sehingga alamat yang dituju bisa dikomunikasikan
- switch mengirim sinyal tidak sibuk diikuti sinyal sibuk untuk menunjukkan register dalam keadaan siap
- switch utama mengirim alamat

Sinyal Kontrol

Note: A broken line indicates repetition of a signal at each office, whereas a solid line indicates direct transmittal through intermediate offices.

Lokasi Sinyal

- Pelanggan ke Network
 - ★ Tergantung pada perangkat pelanggan
- Dalam jaringan
 - Nengaturan panggilan pelanggan dan jaringan
 - **leb**ih kompleks

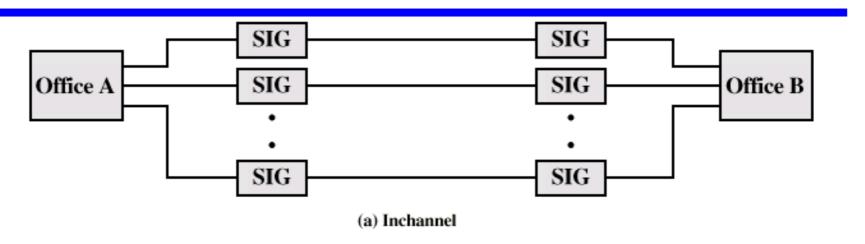
Pensinyalan In Channel

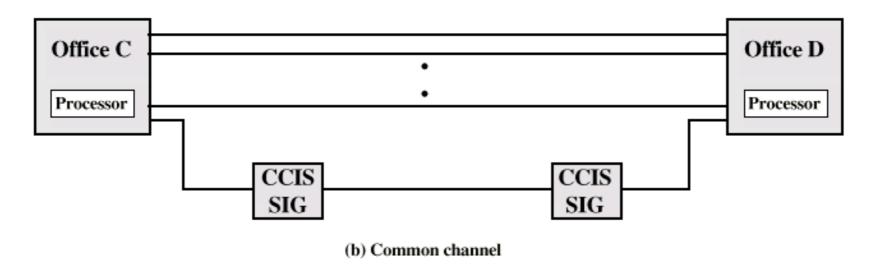
- Penggunaan channel yang sama dalam pensinyalan dan panggilan
 - Tidak membutuhkan tambahan fasilitas transmisi
- Pensinyalan Inband
 - Menggunakan frekuensi yang sama sebagai sinyal suara
 - Sinyal bisa pergi kemana saja, kemanapun suara tersebut pergi
 - Memungkinkan terjadinya pada jalur percakapan yang salah

Pensinyalan In Channel

- Pensinyalan Out of band
 - Sinyal suara tidak menggunakan sepenuhnya bandwidth 4kHz

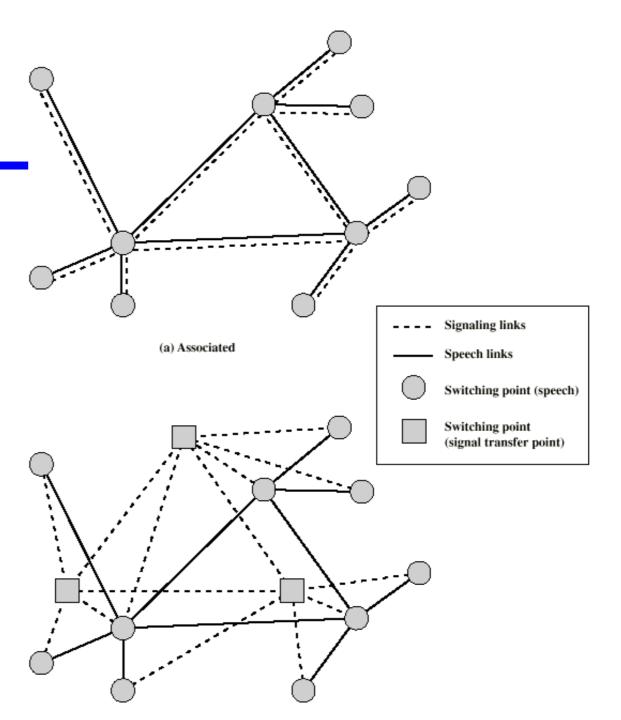
 - ▶ Dapat dilakukan kontrol dan pengawasan terhadap sinyal suara sudah dikirim atau yang masih berada dalam saluran
 - Membutuhkan tambahan elektronik
 - Pensinyalan lebih rendah (Bandwidth terbatas)


Kelemahan Pensinyalan In Channel


- Rate transfer terbatas
- Penundaan terjadi dari saat memasuki alamat serta saat koneksi dibentuk

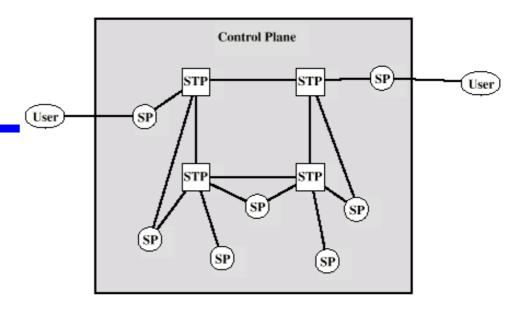
Pensinyalan Common Channel

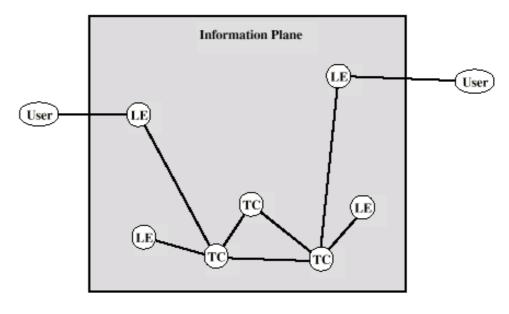
- Sinyal kontrol dibawa sepanjang jalur yang benar-benar bebas dari channel suara
- Satu jalur sinyal kontrol mampu membawa sinyal untuk sejumlah channel pesawat
- Channel kontrol umum bagi channel pelanggan
- Model asosiasi
 - Channel umum jalurnya dekat kelompok trunk interswitch
- Model Disasosiasi
 - Simpul-simpul tambahan (titik pengalih sinyal)
 - Efektif pada 2 jaringan yang terpisah


Pensinyalan Common dan In Channel

CCIS SIG: Common-channel interoffice signaling equipment SIG: Per-trunk signaling equipment

Model Pensinyalan


Sistem Pensinyalan no. 7


- SS7
- Skema Pensinyalan yang paling sering digunakan
- Digunakan pada ISDN
- Optimal pada 64 kb jaringan channel digital
- Kontrol panggilan, kontrol jarak jauh, manajemen dan pemeliharaan
- Handal untuk pengalihan informasi pada suatu rangkaian
- Teresterial titik ke titik dan jalur satelit

SS7 Elemen Jaringan Pensinyalan

- Titik Pensinyalan (SP)
 - Suatu titik dalam jaringan pensinyalan yang mampu mengendalikan pesan SS7
- Titik Pengalih Sinyal (STP)
 - Titik pensinyalan yang mampu menyalurkan pesanpesan kontrol
- Taraf kontrol
 - Bertanggung jawab membangun dan mengatur koneksi
- Taraf Informasi
 - Pada saat koneksi dibangun, informasi dialihkan dari satu pengguna ke pengguna yang lain

Titik Pengalihan

STP = Signaling transfer point

SP = Signaling point

TC = Transit center

LE = Local Exchange

Struktur Jaringan Pensinyalan

- Kapasitas STP
 - Sejumlah jalur pensinyalan dapat dikendalikan
 - Waktu pengalihan pesan pensinyalan
 - Kapasitas laju penyelesaian
- Kinerja Jaringan
 - **Jumlah** SPs
 - National Nat
- Ketersediaan dan keandalan
 - Kemampuan jaringan dalam menyediakan layanan saat terjadi kegagalan STP